
WHAT IS AN INTERNAL DEVELOPER PLATFORM

A self-service platform created and maintained by platform engineering teams to simplify 
and standardise the software development process for your application developers and 
operations teams

LiveWyer Whitepapers 
What is an Internal Developer Platform?

INTERNAL DEVELOPER PLATFORMS EXPLAINED

Often built on top of Kubernetes, an IDP provides application developers with secure, scalable 
workflows that reduce the complexity of managing infrastructure. This allows application 
developers to focus on coding, deployments and delivering value without deep Kubernetes or 
underlying infrastructure expertise. Meanwhile, platform engineering and operations teams retain 
control over policies, governance, and infrastructure standards, ensuring the platform remains 
efficient, compliant, and maintainable while supporting rapid software delivery.

An Internal Developer Platform (IDP) will comprise of these five properties:

1. Unified tooling: brings together development tools into a cohesive interface, simplifying 
workflows.

2. Automated workflows: automates tasks like provisioning and deployment, speeding up 
development.

3. Self-service capabilities: empowers developers to manage resources independently, reducing 
reliance on IT or DevOps teams.

4. Infrastructure as Code (IaC): ensures consistent, scalable, and automated infrastructure 
management.

5. Policy as Code (PaC): automates security and compliance enforcement, reducing errors and 
improving governance.



ORGANISATIONAL BENEFITS OF IDPS

Increased developer autonomy 
Application developers can self-serve 

infrastructure and tools, reducing dependency 
on operations teams.

Automated streamlined operations
Standardises workflows and automates 

repetitive tasks, reducing errors and improving 
efficiency.

Ensures compliance
Maintains governance and security policies 

across environments, reducing risk.

Enhanced productivity 
Simplifies the development process, allowing 

application developers to focus on coding rather 
than managing environments.

Improved collaboration 
Clearly defines roles between development, 
platform engineering and operations teams, 

fostering better teamwork.

Environment replication 
Promotes uniformity in deployment, reducing 
discrepancies between development, testing, 

and production



Faster software delivery 
Accelerates release cycles by reducing 

infrastructure bottlenecks.

Cost savings 
Optimises resource usage and infrastructure 

management, lowering operational costs.

KEY CONSIDERATIONS

Gartner’s Software Engineering Leader’s Guide to Improving Developer Experience states the 
importance of 3 key considerations:

Source: Summary Translation: A Software Engineering Leader’s Guide to Improving Developer 
Experience (gartner.com)

1. Improve application developer experience by building internal developer platforms (IDPs) to 
reduce cognitive load, developer toil and repetitive manual work.

2. Platforms don’t enforce a specific toolset or approach - it is about making it easy for 
developers to build and deliver software while not abstracting away useful and differentiated 
capabilities of the underlying core services.

3. Platform engineering teams treat Platform as a Product (PaaP) and design the platform to be 
consumed within a self-service manner.

https://www.gartner.com/en/documents/4019859
https://www.gartner.com/en/documents/4019859
https://www.gartner.com/en/documents/4019859


1. POC: Start with a small team and a small scope. This allows you to start with the basics, 
enabling the platform to scale across your Enterprise organisation when ready.

2. Healthy environment & healthy feedback: Feedback from application developer teams 
is vital to platform success. If the application developer does not receive value, future 
adoption will not occur. Focus on delivering value to application developers, operations, and 
security teams.

3. Continuous improvement: By combining a healthy environment between your platform and 
development teams with a Continuous Improvement practice, the application developers 
using the IDP will quickly see the value of saving time, allowing them to focus on their 
application code.

4. Clear responsibilities: IDPs often fail when the teams’ roles and responsibilities are not 
enforced correctly. The Platform is for everyone, and having application developers, 
Operations teams, and SRE teams input and even own specific components is vital for them 
to feel like they are a part of its development.

5. Product management: A competent Product Manager is necessary to enforce the roles and 
responsibilities of all parties, resist application developer requirements that are outside the 
scope of the platform engineering, and, most importantly, set clear expectations of what the 
platform engineering team is working on and their current and future priorities.

6. Senior stakeholders: For the Platform to grow, senior buy-in is imperative. However, steps 
1-4 will help you show how the Platform delivers value and is ready to scale to further teams 
with proper backing.

OVERCOMING IDP CHALLENGES

Challenges when architecting and building IDPs are unavoidable, as they are complex. That being 
said, there are key steps and technical principles you can follow to set yourself up for success.

LiveWyer has ten architectural principles for building a Kubernetes as a Service IDP. You can 
combine them into the following proven approach:

GETTING STARTED WITH INTERNAL DEVELOPER PLATFORMS

When we design and build an Internal Developer Platform (IDP), we begin by adopting a product 
mindset and treating the application developers as your customers. 

Start small, identify the specific needs of a single application developer team, and then begin 
creating a minimal version of your platform that delivers immediate value. You can iteratively build 
this foundation by adding core building blocks over time, holding each building block against your 
core platform principles.

The journey should be incremental rather than a “big bang” approach: focus on solving critical 

https://livewyer.io/whitepapers/platform-principles/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=idp
https://livewyer.io/case-studies/kubernetes-as-a-service-platform/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=idp


Thank you for reading

Do you need help with Internal Developer Platforms? Get in touch and let’s work together.

Talk to a Cloud Platform Consultant

Quick response Free consultation

problems first, using Cloud Native tools where possible. 

Make small iterations and additions that solve your organisation’s unique challenges. Listening to 
and acting on feedback from application developers ensures they are keen to adopt and champion 
the platform as it scales to additional application developer teams and new business areas.

Once you have multiple application developer teams championing your platform, the buy-in of 
Senior Stakeholders will soon follow.

Expertise where it matters.

LinkedInBluesky livewyer.io

https://livewyer.io/contact/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=idp
https://www.linkedin.com/company/livewyer/
https://bsky.app/profile/livewyer.io
https://livewyer.io/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=idp
https://livewyer.io/

