
Platform Principles
LiveWyer’s core architectural principles lay the essential groundwork for your
platforms long-term success. We have used these principles with our clients
for the last ten years, and these architectural principles underpin our many
success stories.

Start your Cloud platform journey, and embed our ten LiveWyer architecture
principles into your foundations.

Get in touch and see how we can help with your
Cloud Native journey

LiveWyer has worked with many global enterprises to help implement robust,
sustainable, and elegant architectures so that their Platforms can withstand the test
of time.

Book an initial consultation here if you would like to speak to one of our experienced
architects for support or guidance on your Platform journey.

hello@livewyer.io | +44 (0) 20 3608 0110 | 9 Great Russell St, London

Incorporate open source solutions to avoid
vendor lock-in, ensuring flexibility, competitive
pricing, and minimal exit costs. Open source
drives innovation with cutting edge tools and
adaptability. Using open standards, APIs,
and containerisation boosts interoperability
and future-proofs your platform, providing
strategic control, efficiency, and sustained
competitive advantage.

To ensure top-tier security of your platform,
adopt Infosec best practices. Implement least
privilege access to limit user permissions, use
robust encryption to protect data in transit and
at rest, and keep systems up-to-date with the
latest security patches. These measures help
safeguard against vulnerabilities and protect
sensitive information.

Incorporate DRY (Don’t Repeat Yourself)
principles into your platform design to
minimise code repetition. This practice
simplifies future code changes by centralising
logic and reducing redundancy, making
the system easier to maintain and extend.
Avoiding duplication enhances code clarity
and consistency, leading to more efficient
development and debugging.

Incorporate declarative configuration into
your platform to ensure systems converge
to a desired state. This approach enhances
efficiency and reliability by defining the target
configuration, allowing automated tools to
manage changes and maintain consistency.
It simplifies management, reduces errors,
and ensures that infrastructure aligns with
defined specifications.

Adopt a Pull Model in your platform architecture
to improve maintainability and scalability. In this
model, agents regularly retrieve updates from
a central source of truth, ensuring consistency
across systems. This approach simplifies update
management, reduces the risk of inconsistencies,
and allows for scalable and controlled
deployment of changes, enhancing overall
system stability.

To maintain a clean and scalable platform
architecture, focus on well-defined interfaces
and frameworks. This approach preserves
maintainability by clearly separating concerns
and respecting the boundaries between
abstractions. Doing so ensures components can
evolve independently, reduce complexity, and
facilitate easier debugging and updates, leading
to a more robust system.

Implement GitHub Flow as a lightweight branch-
based model for source control of your platform.
This approach encourages collaboration
from all team members, not just developers,
by simplifying the process of proposing
changes. It allows for seamless integration of
contributions, enhances transparency, and
ensures a streamlined workflow for code reviews
and deployments.

Adopt GitOps and Continuous Delivery (CD) as a
platform principle to streamline the deployment
process. Using a CD system to deploy tested
and reviewed changes ensures a consistent and
automated workflow. This integration maximises
the benefits of both methodologies, enabling
rapid, reliable updates and maintaining a clear
audit trail for all deployments.

Develop and implement a clearly defined
taxonomy to ensure your platform is predictable
and scalable. This approach enhances resource
management and security with consistent
naming conventions and hierarchical structures.
Well planned and well defined taxonomy allows
you to successfully maintain your platform while
it remains adaptable and efficient in its longevity.

Implement Infrastructure as Code (IaC) to
enhance your platform, enabling automated,
consistent, and repeatable infrastructure
deployments. It allows for version control,
making changes trackable and auditable. IaC
reduces human error, streamlines processes,
and improves team collaboration, ultimately
leading to more efficient and scalable
infrastructure management.

Utilise open source
(where feasible)1

Adopt Infosec industry
best practices4

Don’t repeat yourself7

Declarative
configuration5

Adopt a Pull Model8

Focus on interfaces
and frameworks6

Implement GitHub
Flow9

GitOps and continuous
delivery (CD)10

Well-planned & well-
defined taxonomy2 Infrastructure as Code3

https://livewyer.io/case-studies/
https://livewyer.io/contact/

